
TSYS02D Digital Temperature Sensor

- High Accuracy Temperature Sensor
- 16 bit Resolution
- High Speed, low Response Time
- Low Power Consumption
- I²C Interface
- Small TDFN8 Package

DESCRIPTION

The TSYS02D is a single chip, temperature sensor.

It provides factory calibrated data corresponding to the measured temperature. The data is provided via l^2C interface.

The temperature range is -40°C ... +125°C while the resolution is 0.01°C.

The TSYS02D can be interfaced to any microcontroller by an I²C interface.

The TDFN8 package provides smallest size and very fast time response.

FEATURES

APPLICATIONS

High Accuracy ±0.2°C @ Temp.: -5°C ... +50°C

Adjustment of high accuracy temperature range on request

Low Supply Current < 420µA (standby < 0.14µA) I²C Interface up to 400kHz Small IC-Package TDFN8 2.5mm x 2.5mm Operating Temperature Range: -40°C ... +125°C Industrial Control Replacement of Precision RTDs, Thermistors and NTCs Heating / Cooling Systems HVAC

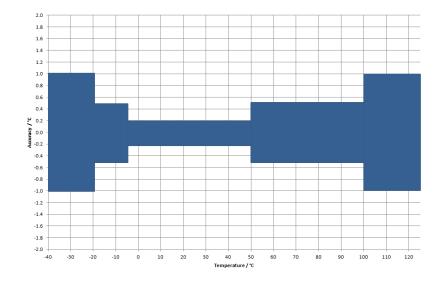
ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VDD		-0.3		+3.6	V
Operating Temperature	Тор		-40		+125	°C
Storage temperature	Tstor		-55		+150	°C
ESD rating	ESD	Human Body Model (HBM) pin to pin incl. VDD & GND	-2		+2	kV
Humidity	Hum		Non	conder	nsing	

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V _{DD}	stabilized	1.5		3.6	V
Supply Current	I _{DD}	1 sample per second		18		μA
Standby current	IS	No conversion, VDD = 3V T = 25°C T = 85°C		0.02 0.70	0.14 1.40	μΑ μΑ
Peak Supply Current	I _{DD}	During conversion		420		μA
Conversion time	T _{CONV}			43		ms
Serial Data Clock I ² C	F _{SCL}				400	kHz
VDD Capacitor		Place close to the chip	100nF			


OPERATIONAL CHARACTERISTICS

If not otherwise noted, 3.3V supply voltage is applied.

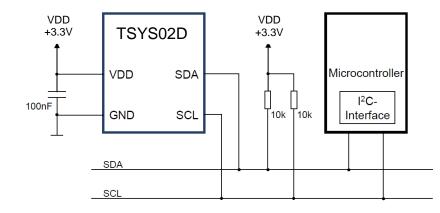
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Temp. Measurement Range	T _{RANG}		-40		125	°C
Accuracy 1	T _{ACC1}	-5°C < T < +50°C V _{DD} = 3.2V - 3.4V	-0.2		+0.2	°C
Accuracy 2	T _{ACC2}	-20°C < T < +100°C V _{DD} = 3.2V - 3.4V	-0.5		+0.5	°C
Accuracy 3	T _{ACC2}	-40°C < T < +125°C V _{DD} = 3.2V - 3.4V	-1.0		+1.0	°C
PSRR Power Supply Reject Ratio		V _{DD} = 2.7 – 3.6 T = 25°C, C = 100nF			0.1	°C
Temperature Resolution	T _{RES}				0.01	°C
Self Heating	SH1	10 samples/s, 60s, still air			0.1	°C

TSYS02D Digital Temperature Sensor

ACCURACY

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Resolution				16		bit
Conversion Time	t _c			43		ms


DIGITAL INPUTS (SCLK, SDA)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input High Voltage	VIH	V _{DD} = 1.53.6V	$0.7 V_{DD}$		V _{DD}	V
Input Low Voltage	VIL	V _{DD} = 1.53.6V	$0.0 V_{DD}$		0.3 V _{DD}	V
Input leakage Current	I _{leak_25} I _{leak_85}	T = 25°C T = 85°C		0.01 0.25	0.14 1.40	μA
Input Capacitance	C _{IN}				6	pF

DIGITAL OUTPUTS (SDA)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output High Voltage	V _{OH}	I _{Source} = 1mA	0.8 V _{DD}		V _{DD}	V
Output Low Voltage	V _{OL}	$I_{Sink} = 1mA$	$0.0 V_{DD}$		$0.2 V_{DD}$	V

CONNECTION DIAGRAM

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	VDD	Power	Supply Voltage
2	SCL	Digital Input	I ² C: Serial Data Clock
3	SDA	Digital Input/Output	I ² C Data Input / Output
4	VSS	Power	Ground
5 – 8	NC		Not connected / Do not connect

INTERFACE DESCRIPTION

I²C INTERFACE

An I^2C communication message starts with a start condition and it is ended by a stop condition. Each command consists of two bytes: the address byte and command byte.

I²C ADDRESS

The I²C address is 0b100000x.

COMMANDS

There are four commands:

- Reset
- Read PROM (serial number)
- Read ADC16 Temperature Data (with SCL hold)
- Read ADC16 Temperature Data (without SCL hold)

Command	Hex Value
Reset	0x7E
Read ADC16 Temperature Data (with SCL hold)	0x E3
Read ADC16 Temperature Data (without SCL hold)	0x F3
Read first 8 bytes of Serial Number	0x FA0F
Read last 6 bytes of Serial Number	0x FCC9

RESET SEQUENCE

The reset of TSYS02D can be sent at any time. When SDA line is blocked by an undefined state the only way to get the TSYS02D to work is to send a power on reset or several SCL cycles. This is not needed when the last command was not a conversion.

1 0 0 0 0 0 0 0 1 Device Address	. 1 1 1 1 1 1 0 0 command		
S Device Address W A	cmd byte A P		
From Master SCL Slave Po	oll S = Start Condition P = Stop Condition	W = Write R = Read	A = Acknowledge N = Not Acknowledage

CONVERSION AND ADC READ

A conversion can be started by sending this command to TSYS02D. When the command is sent to the sensor it stays busy until conversion is done. All other commands except the reset command will not be executed during this time. When conversion is finished the data can be accessed by sending a Read command. If an acknowledge appears from the TSYS02D, you may then send 24 SCLK cycles to get all result bits. Every 9th bit the system waits for acknowledge. If the acknowledge is not sent the data clocking out of the chip stops. Two types of conversion commands for temperature reading are possible. If the "hold" command is issued, the SCL is held low during conversion, indicating when the conversion is finished. If the "no hold" is issued, the SCL line is not controlled by the TSYS02D.

WITH HOLD

1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 1 1 data Result bit 15 - 8 A = Acknowledge N = Not Acknowledage	0 0 1 0 1 0 0 X X 0 data+ stat 2lsb A Result bit 7 - 0 A	0 1 1 0 0 0 1 1 0 data Checksum N P
WITHOUT HOLD 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 Device Address S Device Address W A cmd byte A	-		
From Master SCL Slave Poll S = Start Condition From Slave Poll if the conversion is finished by sending the address and check	W = Write R = Read k for acknowledge	A = Acknowledge N = Not Acknowledage	

1 0 0 0 0 0 1 0 0	1 1 0 0 0 1 1 0 0	1 0 1 0 0 X X 0	0 1 1 0 0 0 1 1	0
Device Address	data	data+ stat 2lsb	data	
S Device Address R A	Result bit 15 - 8 A	Result bit 7 - 0 A	Checksum	NP
From Master SCL Slave Pol	S = Start Condition P = Stop Condition		= Acknowledge = Not Acknowledage	

READ SERIAL NUMBER FIRST 8 BYTES

READ SERIAL NUMBER LAST 6 BYTES

TEMPERATURE CALCULATION

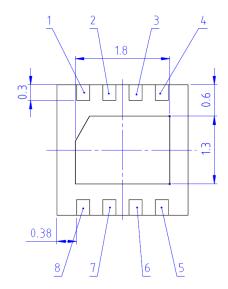
TEMPERATURE POLYNOMAL

ADC16: ADC Result 16 bits

 $T / ^{\circ}C = ADC16 / 2^{16} \times 175.72 - 46.85$

EXAMPLE

ADC16:	<u>36636</u>
T / °C =	36636 / 2 ¹⁶ x 175.72 - 46.85
T / °C =	<u>51.38°C</u>


TSYS02D Digital Temperature Sensor

DIMENSIONS


TOP VIEW

2.5 TSY2 1244 o

BOTTOM VIEW

SIDE VIEW

MARKING

Line	Description	Example
1	Product Name	TSY2
2	Pin 1 Dot, Date Code YYWW	1244

ORDER INFORMATION

The TSYS02 temperature sensor family compromises currently three different solutions. Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Name	Description	Order Number
TSYS02D	Digital Temperature Sensor, TDFN8, I2C Interface	G-NIMO-003
TSYS02P	Digital Temperature Sensor, TDFN8, PWM Interface	G-NIMO-004
TSYS02S	Digital Temperature Sensor, TDFN8, SDM Interface	G-NIMO-005

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury. MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

联系方式

广东省深圳市南山区创业路恰海广场东座2407 邮编:518000 电话:+86 755 2641 9890 传真:+86 755 2641 9680 电子邮箱:sales@bill-well.com

TSYS02D Rev 3