

- Magnetoresisitve sensor technology
- Linear signal output
- Over increased field range
- Very low hysteresis
- High sensititvity
- Substitutes KMZ10C / NXP

DESCRIPTION

Due to its featured properties - high sensitivity and almost no hysteresis – the **KMZ10CM** sensor is used in a wide range of applications, like magnetic field measurement, revolution counters, proximity detecting, and position measurement.

FEATURES

- Wheatsone bridge
- Passive output signal
- Linear signal output proportional to magnetic field strength
- 4 lead package for measurement of z direction

APPLICATIONS

Detection of small magnetic fields, as in:

- · Contactless switch
- · Contactless displacement measurement
- · Current measurement

Polarity detection of small magnetic fields

PERFORMANCE SPECS

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
A. Operating Limits 1)							
max. supply voltage	$V_{CC,max}$				10	V	
operating temperature	T _{op}		-40		+150	°C	
storage temperature	T _{st}		-65		+165	°C	
B. Sensor Specifications (T = 25 °C; H _X = 3 kA/m)							
supply voltage	V _{CC}			5	10	V	
bridge resistance	R_b		1000	1400	1800	Ω	
offset voltage	V_{OFF}/V_{CC}	H _x =0	-1.5	0	+1.5	mV/V	
sensitivity	S	note 2	1	1.2	2	(mV/V)/(kA/m)	
hysteresis	V_{HYST}	note 3	-	-	100	μV/V	
linearity deviation	FL	note 4	-	-	6.5	%	
C. Sensor Specifications ($T_{low} = 30 ^{\circ}\text{C}$; $T_{high} = 80 ^{\circ}\text{C}$; $H_X = 3 \text{kA/m}$; $V_{CC} = 5 \text{V}$)							
TC of sensitivity	TCS	note 5	-	- 0.35	-	%/K	
TC of resistance	TCBR	note 6	-	+ 0.45	-	%/K	
TC of offset	TCV _{off}	note 7,8, H _x =0	-4	0	+4	μV/V/K	

- 1) Stress above one or more of the limiting values may cause permanent damage to the device. Exposure to limiting values for extended periods may affect device reliability.
- 2) The sensitivity is defined as the average slope of characteristic between Hy=0 and 6 kA/m and Hx=3kA/m:

$$S = \frac{V_0(H_y = 6kA/m) - V_0(H_y = 0)}{6*V_{CC}}$$

3) Hysteresis is defined as the difference between offset voltages measured without Hy-field after premagnetization by negative and positive Hy=±6 kA/m field:

$$V_{HYST} = V_0(H_1 \to H_0) - V_0(-H_1 \to H_0); H_0 = 0; H_1 = 6\frac{kA}{m}; H_X = 3\frac{kA}{m}; V_{CC} = 5V$$

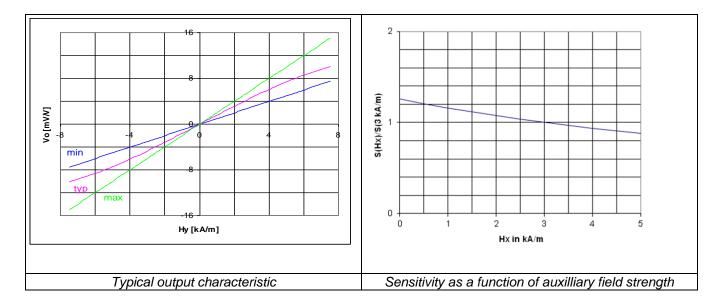
4) The linearity error is the deviation of output voltage measured at Hy=3 kA/m from the average of Hy=0 and 6 kA/m-output voltages, expressed as percentage of the output voltage difference measured between 0 and 6 kA/m:

$$FL = \left| \frac{1}{2} - \frac{V_0(H_y = 3kA/m) - V_0(H_y = 0)}{V_0(H_y = 6kA/m) - V_0(H_y = 0)} \right| *100\%$$

5) The temperature coefficient of sensitivity is defined as the percentage change of the sensitivity per K referred to the value at T₁ = -25 °C; T₂= operating temperature:

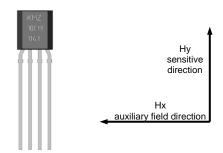
$$TCS = \frac{1}{(T_2 - T_1)} * \frac{S(T_2) - S(T_1)}{S(T_1)} * 100\%$$

6) The temperature coefficient of resistance is defined as the percentage change of the resistance per K referred to the value at $T_1 = -25$ °C; $T_2 =$ operating temperature:

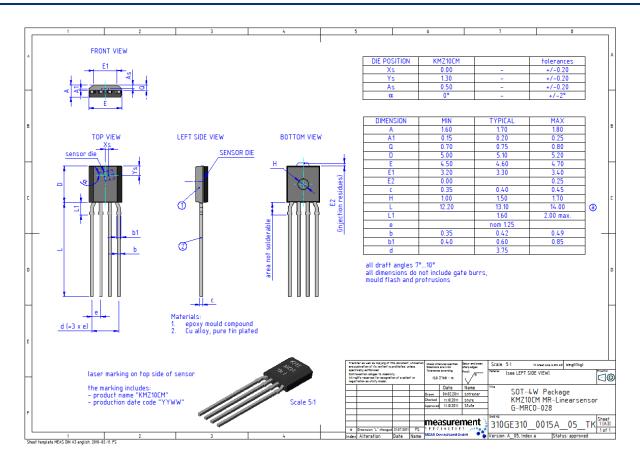

$$TCBR = \frac{1}{(T_2 - T_1)} * \frac{R(T_2) - R(T_1)}{R(T_1)} * 100\%$$

7) Temperature coefficient of offset voltage is defined as the voltage change per K expressed in $\mu V/V$:

$$TCV_{off} = \frac{V_{off}(T_2) - V_{off}(T_1)}{(T_2 - T_1)}$$


8) Linear behaviour assumed

TYPICAL PERFORMANCE CURVES


FUNCTION

TERMINAL CONNECTIONS

Pin	Symbol	Function
1	+Vo	positive output voltage
2	GND	negative supply voltage
3	-Vo	negative output voltage
4	+Vcc	positive supply voltage

BLOCK DIAGRAM

ORDERING CODE

Product	Description	Part number	
KMZ10CM	KMZ10 CM Linear Field Sensor	G-MRCO-028	

联系方式

广东省深圳市南山区创业路怡海广场东座2407 邮编:518000 电话:+86 755 2641 9890 传真:+86 755 2641 9680

电子邮箱:sales@bill-well.com